skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Trappitsch, Reto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Presolar grains are stardust particles that condensed in the ejecta or in the outflows of dying stars and can today be extracted from meteorites. They recorded the nucleosynthetic fingerprint of their parent stars and thus serve as valuable probes of these astrophysical sites. The most common types of presolar silicon carbide grains (called mainstream SiC grains) condensed in the outflows of asymptotic giant branch stars. Their measured silicon isotopic abundances are not significantly influenced by nucleosynthesis within the parent star but rather represent the pristine stellar composition. Silicon isotopes can thus be used as a proxy for galactic chemical evolution (GCE). However, the measured correlation of29Si/28Si versus30Si/28Si does not agree with any current chemical evolution model. Here, we use a Monte Carlo model to vary nuclear reaction rates within their theoretical or experimental uncertainties and process them through stellar nucleosynthesis and GCE models to study the variation of silicon isotope abundances based on these nuclear reaction rate uncertainties. We find that these uncertainties can indeed be responsible for the discrepancy between measurements and models and that the slope of the silicon isotope correlation line measured in mainstream SiC grains agrees with chemical evolution models within the nuclear reaction rate uncertainties. Our result highlights the importance of future precision reaction rate measurements for resolving the apparent data–model discrepancy. 
    more » « less